

		EXHIBIT 16-5. TYPICAL LANE G	ROUPS FOR ANALYSIS			
	Number of Lanes	Movements by Lanes	Number of Possible Lane Groups			
	1					
Lane	2	EXC LT				
Grouping	2	LT + TH				
	3	EXC LT				

Assume that each approach of an intersection has three lanes, i.e., one for the left-turn vehicles, one for through vehicles, and one for the right-turn vehicles. The saturation discharge headway at the intersection is 2.0 seconds. This intersection is designed to have the following three phases with 3.0-second lost time for each phase: Phase A: left-turn movements from the EB and WB approaches Phase B: through and right-turn shared movements from the EB and WB approaches Phase C: all movements from the NB and SB approaches . 1) Draw the phase plan diagram. 2) What's the total critical volume, V_c ? 270 v/ 3) If the capacity is fully utilized, what's the minimum cycle length (Cmin) of the intersection North 130 v/h given the phase plan? 4) If the capacity is desired to be 90% utilized (i.e., v/c = 0.90), what's the desirable cycle length 250 v/h (Cdes) of the intersection given the phase plan 600 v/h 190 v/h (PHF = 0.92)?170 v/h 560 v/h. 220 v/h 150 v/h 420 v/h 80

	Opposing Flow	Number of Opposing Lanes, N			
	V _o (veh/h)	1	2	3	
In general, left and right	0	1.1	1.1	1.1	
	200	2.5	2.0	1.8	
	400	5.0	3.0	2.5	
	600	10.0*	5.0	4.0	
	800	13.0*	8.0	6.0	
	1,000	15.0*	13.0*	10.0*	
	≥1.200	15.0*	15.0*	15.0*	
urns are converted to	E_{LT} for all protected left turns = 1.05				
equivalent through vehicle units by turning factors affecting the intensity (Tables 21.1 & 21.2).	"The LT capacity is only available through "sneakers."				
	Table 21.2: Through-Vehicle Equivalents forRight-Turning Vehicles, E_{RT}				
	Pedestrian Volume in Conflicting Crosswalk, (peds/h)		Equivalent		
	None (0)		1.18		
	None (0)		1.18		
	None (0) Low (50)	100	1.18 1.21		
	None (0) Low (50) Moderate (2	.00)	1.18 1.21 1.32		

The second se	Opposing Flow	Number of Opposing Lanes, N			
	V _o (veh/h)	1	2	3	
	0	1.1	1.1	1.1	
	200	2.5	2.0	1.8	
	400	5.0	3.0	2.5	
	600	10.0*	5.0	4.0	
In general, left and right turns are converted to equivalent through vehicle units by turning factors affecting the	800	13.0*	8.0	6.0	
	1,000	15.0*	13.0*	10.0*	
	≥1.200	15.0*	15.0*	15.0*	
	E_{LT} for all <i>protected</i> left turns = 1.05				
	 *The LT capacity is only available through "sneakers." Table 21.2: Through-Vehicle Equivalents for Right-Turning Vehicles, E_{RT} 				
ehicle units by turning actors affecting the	Table 21.2: Th Right-Turning Ve	rough-Vehicle ehicles, E _{RT}	Equivalent	s for	
ehicle units by turning actors affecting the itensity (Tables 21.1 & 1.2).	Table 21.2: Th Right-Turning Ve Pedestrian Ve in Conflict Crosswalk, (p	rough-Vehicle ehicles, <i>E_{RT}</i> olume ing eds/h)	Equivalent	ns for	
chicle units by turning ictors affecting the tensity (Tables 21.1 & 1.2).	Table 21.2: Th Right-Turning Ve Pedestrian Ve in Conflict Crosswalk. (p None (0)	rough-Vehicle ehicles, E _{RT} slume ing eds/h)	Equivalent Equivale	ent	
ctors affecting the tensity (Tables 21.1 & 1.2).	Table 21.2: Th Right-Turning Ve Pedestrian Ve in Conflict Crosswalk. (p None (0) Low (50)	rough-Vehicle ehicles, E _{RT} olume ing eds/h)	Equivalent Equivale 1.18 1.21	ent	
chicle units by turning ctors affecting the tensity (Tables 21.1 & 1.2).	Table 21.2: Th Right-Turning Ve Pedestrian Ve in Conflict Crosswalk. (p None (0) Low (50) Moderate (2	rough-Vehicle ehicles, E _{RT} hume ing eds/h)	Equivalent Equivale 1.18 1.21 1.32	ent	
chicle units by turning ictors affecting the tensity (Tables 21.1 & 1.2).	Table 21.2: Th Right-Turning Ve Pedestrian Ve in Conflict Crosswalk. (p None (0) Low (50) Moderate (2 High (400)	rough-Vehicle ehicles, E _{RT} hume ing eds/h) 00)	Equivalent Equivale 1.18 1.21 1.32 1.52	ent	

	Basics of Phasing Design							University of CINCINNATI		
Timing Chart										
		SI	GNAL	TIMING	IN SEC	DNDS				
		WB LT	EB	NB LT	SB	EB LT	WB	SB LT	NB	
	TIMING INTERVAL	øl	¢2	ø3	ø4	ø5	¢6	¢7	¢8	
	MINIMUM GREEN				26		2			
	ADDED INITIAL (SEC/ACT)				2					
	MAXIMUM INITIAL	ss			2					
	PASSAGE TIME									
	TIME BEFORE REDUCTION	· · · · · · · · · · · · · · · · · · ·					·			
	MINIMUM GAP	2					· · · · · ·			
	TIME TO REDUCE	· · · ·								
	MAXIMUM GREEN I	<i>8</i> 8								
	MAXIMUM GREEN II	· · ·								
	YELLOW CHANGE									
	ALL RED CLEARANCE	×								
000.00000	WALK									
FDW	PEDESTRIAN CLEARANCE									
	RECALL				0.					
	MEMORY	· · · · ·			-					
								End	-24	